上上始终专注于电线电缆产品的研发、制造和服务,产品涉及新能源、输配电、海工及船舶、建筑工程、矿用、工业制造、轨道交通、机场等领域。产品为城楼改造、北京、上海世博、港珠澳大桥、京沪高铁、核电工程、苏通GIL综合管廊工程等国家重点项目所选用,并出口**80多个国家和地区。
企业现已具备从220伏直至50万伏全系列电力电缆及各类特种电缆的生产能力,其中三代核电AP1000壳内电缆填补了世界核级电缆领域空白,华龙一号壳内电缆达到国际技术水平。与此同时,一大批高技术含量的新能源汽车用电缆、港口机械用卷筒电缆、柔性防火电缆、风能用耐扭电缆、光伏电缆、岸电电缆、轨道交通用机车电缆等均已批量进入市场,成为公司新的增长点。
近年来,上上的专注赢得了媒体的广泛关注,CCTV新闻联播、焦点访谈、经济信息联播、经济半小时等央视黄金栏目均专题报道上上,、日报、经济日报、中新社、网、光明日报、中国质量报等媒体都在重要版面刊登上上报道,上上品牌影响力与日俱增。
50年来,上上坚守主业、实业实干。“十三五”期间,上上继续实施“精、专、特、外”发展战略,站在新起点,迈向新高度,坚持“改革、创新、争先”,不断提高企业核心竞争力,向着**电缆制造业的参与者不断迈进。
生产工艺
核电站电缆通常采用挤出、注塑和模压3种主要的生产方法。无论是哪种生产方法原料初的加工基本相同,都需要干燥、初混,然后依据生产核电站电缆的种类和原料的不同而有所区别。
挤出法制备
热塑性电缆的生产方法主要是挤出法。挤出设备可用于混合,也可用于造粒。挤出工艺主要包括挤出温度及螺杆转速的设置。随配方体系的不同,电缆对应的挤出温度也有所不同。同一种电缆在不同挤出设备上挤出温度也不同,主要随挤出机螺杆结构不同而相异。另外,挤出机机头的选择也对电缆有很大影响。例如,阻燃聚烯烃电缆与非阻燃聚烯烃电缆的不同之处在于前者含有阻燃剂填充,其中低烟元卤阻燃电缆填充量甚**达150phr以上,这就导致了其在熔融状态下强度、拉伸比、熔体粘度与非阻燃聚烯烃电缆存在较大差异,从而要求挤出时模具的选配也有所不同。一般来说,阻燃聚烯烃电缆均适用于挤压式(多用绝缘挤出)、半挤管式及挤管式模具(多用护套挤出)。使用挤压式时,因聚烯烃电缆熔体粘度大使得机头压力增加,挤出制品压得较密实,导致离模时会有所膨胀,故可选用模套内径尺寸比成品尺寸小5%左右;使用半挤管式及挤管式模具时,必须考虑到电缆的拉伸比。 [1]
注射法制备
注塑法经常用于批量生产,在注塑过程中,泵送系统在全封闭状态下将不同的组分直接泵入混合机内进行均化,然后泵入模腔中。在高温下,电缆在模腔中快速实现模塑和固化,注射仅需3~10s,模塑和固化则需要10~90s或更长的时间才能完成,具体根据注射质量和部件的终厚度而定。注塑的整个流程采用封闭式,可大幅度减少污染。而且由于采用一步式自动流程,可保证部件质量连续一致,减少差异现象或人为因素。同时可减少材料准备所需的人力,降低注射压力,加快周期速度,实现系统全自动。
模压法制备
模压法需在高混机或双辊开炼机中进行预混(初混),而后在双辊开炼机上混炼成型。此方法必须在低温下进行,因此,运行周期更长,消耗较多人力。
模压通常是在平板固化机上完成,按一定的规格下料后置于压制模具中,合模后在液压机上按规定的工艺条件压制,在加热和加压的条件下,电缆呈现塑性流动充满型腔,再经一定时间的持续加热后完成固化成型。
国内核电站
核电站电缆主要采用聚乙烯作主料。如采用乙烯-乙酸乙烯酯共聚物制备的核电站IE级电缆材料,该电缆具有较好的机械及加工性能、耐高温、燃烧时不易滴落等优点。利用乙烯~乙酸乙烯酯共聚物40~85%,乙丙胶和硅橡胶15%~60%,研制成一种硅烷交联聚烯烃电缆,该技术不但使用温度范围可达-70~125℃,而且耐低温性能也得到较大改善.可以承受-70℃的低温,耐热等级也由9O℃提高到125℃,在电缆承载能力或负载相同情况下,延长了使用寿命,电缆可用于1OkV及以下电缆作绝缘护套,特别适用于移动式电缆或柔软连接系统。王乐以乙烯一乙酸乙烯酯共聚物(EVA)、线性低密度聚乙烯(LLDPE)、**硅(ZD)、氢氧化铝(ATH)、氢氧化镁(MH)、**硅粉为原料,EVA与LLDPE按比例混合作为基体树脂,ATH与MH按比例混合作为复合阻燃剂,并用钛酸酯偶联剂进行表面处理,得到的多相复合体系无卤阻燃电缆护套料具有优异的力学性能和阻燃性。
此外,计初喜明研究了一种全新的聚醚酰亚胺工程塑料,该塑料可广泛应用于航海、军事、铁路、隧道等各领域的电缆,它所具有的无卤、无毒、阻燃、耐腐蚀、优良的耐辐射性能,更适用核电站环境,是一种理想的IE级KI类电缆的绝缘和护套。深圳市泰士特线缆已对该材料进行了生产,进一步说明该材料易加工、性能好。
耐辐照是核电站电缆的一项重要指标。上海电缆研究所的孙建生等采用了3种核电站电缆进行了辐照老化试验,得出材料的断裂伸长率、抗张强度、硬度、体积电阻率等与辐照剂量的变化关系,并且还研究了不同辐照类型射线
对材料老化的影响,为正确选择核电站电缆提供了依据。上海交通大学金天雄等也研究了Υ辐照对交联聚乙烯绝缘电缆水树行为的影响,研究发现,在0~3000kGy的Υ辐照剂量范围内,随着辐照剂量的增加,交联聚乙烯绝缘的凝胶含量增加,羰基指数值增加,**过1500kGy的辐照剂量时,凝胶含量增加和羰基指数保持基本不变或再次降低,随着辐照剂量增加到2000kGy,水树枝长度增加,水树数量(水树密度)也增加。另外,与热老化相比,交联聚乙烯绝缘在Υ辐照作用后生长的水树形状差异性较大。
另外,*们在对核电站用绝缘和阻燃电缆进行研究的同时,解决了现有核电站电缆制造工艺复杂、成本较高,且耐长期热老化、拉伸强度较差等问题。吴道虎以氯磺化聚乙烯作主体骨架材料,并用一定量的乙丙橡胶,过氧化物作硫化剂,HVA-2和TMTP作助硫化剂,氢氧化铝作阻燃剂,硬脂酸锌作表面处理剂,对煅烧陶土和LEE白滑粉表面进行处理,研制的电缆护套料可满足核电站的使用要求和IEC502的性能要求。王巧娥等采用三元乙丙橡胶、苯基硅橡胶、表面处理过的氢氧化镁阻燃剂和其它配合剂,通过正交试验研究各组分对绝缘材料性能的影响,确定了耐辐照无卤低烟阻燃绝缘材料的配方,该绝缘材料具有高阻燃性能、抗辐照性能,同时具有良好的力学性能和电绝缘性能。李月霞采用低烟无卤阻燃聚烯烃,以氢氧化铝、氢氧化镁和硼酸锌作阻燃剂,通过异向高速组合式双阶双螺杆造粒系统,然后经共混无机阻燃体系进行熔融挤出造粒,制备出的低烟无卤阻燃电缆,具有在着火后不延燃、低烟无卤、无毒、无腐蚀等特性,特别适合于核电站、地下铁道、隧道、高层建筑以及广播电视台等场合。
电缆特性
性能低烟
核电站用电缆的绝缘和护套材料必须采用低烟、无毒、无腐蚀性的无卤阻燃电缆,如热塑阻燃无卤素或交联阻燃无卤素材料,才能满足特殊的核安全要求。无卤电缆在发生火灾时,燃烧释放的烟雾量很低,不带毒性及腐蚀性,其阻燃成分可有效发挥阻燃作用,不会使电缆成为火焰蔓延的通道。无卤阻燃电缆的主要技术特性有:(1)核电站用电缆烟的总累积量Dm<150;(2)无毒性及腐蚀性,即电缆燃烧不析出HCI和CO;(3)具有阻燃性,聚合物的阻燃性通常用氧指数(0I)法来评定,一般OI≥28。
核电站电缆用材料必须具有耐环境性,即耐热性、耐辐照性和耐LOCA性。
(1)耐热性由于核电站电缆常在高温环境下工作,高温电缆。因此它们需要具有长期耐热使用性能,要选用耐热性满足要求的聚合物,并可让电缆具有40年以上的使用寿命。
(2)耐辐照性(缓和环境,严酷环境)核电站用电缆受到大量射线时会使绝缘和护套材料变脆,力学性能变差。因此,作为核电站电缆用的绝缘和护套材料,必须具有优良的耐辐照性。各种不同的高聚物,其耐辐照性能不同。人们通常在高聚物里添加抗辐照剂,改进其耐辐照性能。
(3)耐LOCA性核电站中,通常将冷却剂损失事故(Lossofcoolingaccident,LOCA)和高能管破裂事故(Highenergylinebreak,HELB)统称LOCA。在发生LOCA/HELB时,电缆会受到高温高压蒸汽的冲击和腐蚀性化学药剂的作用,并且要受到比正常运行情况下更高剂量的射线辐射。因此,核电站电缆应具有耐LOCA性。
电缆选择技巧
一般原则
电缆的额定电压等于或大于所在网络的额定电压,电缆的工作电压不得**过其额定电压的15%。除在要移动或振动剧烈的场所采用铜芯电缆外,一般情况下采用铝芯电缆。敷设在电缆构筑物内的电缆宜采用裸铠装电缆或铝包裸塑料护套电缆。直埋电缆采用带护层的铠装电缆或铝包裸塑料护套电缆。移动机械选用重型橡套电缆。有腐蚀性的土壤一般不采用直埋,否则应采用特殊的防腐层电缆。在有腐蚀性介质的场所,应采相应的电缆护套。垂直或高差较大处敷设电缆,应采用不滴流电缆。环境温度**过40℃时不宜采用橡皮绝缘电缆。
截面校验
(1)按电压选择电缆:按照上述的一般原则中的条进行选择。
(2)按经济电流密度选择电缆截面:计算方法与导线截面的计算方法一样。
(3)按照线路长期负载电流校验电缆截面Iux≥Izmax
式中:Iux——电缆的允许负载电流(A);
Izmax——电缆中长期通过的负载电流(A)。
我们在平时的工作中长用的就是这种选择方法,通常是先求出线路的工作电流,再按照线路的工作电流不应该大于电缆的允许载流量。电缆允许的长期工作电流见表一。
我们在实际工作中经常会遇到这种情况,由于负荷的增加,负载电流增大,原有电缆载流量不足,过流运行,为了增加容量,考虑到原有电缆运行正常,要重新敷设电缆施工难度大而且不经济,我们常采用双并、甚至三并的做法。
在并用电缆的选择上很多人认为只要在满足载流量要求的前提下电缆截面越小越经济,越合理,实际究竟是不是这样呢。
2006年1月3日1#变压器至配电室主电缆爆,原185mm的四心铝心电缆2根爆了一根,工区为了及时恢复供电,将另一根好的电缆保留,并了两根120mm的四心铝心电缆进行供电。在运行了10个月后2006年11月15日主电缆再次爆裂,经检查发现,185mm的电缆爆引发了此次事故。
为什么会发生此次事故呢,按照表一我们可以得出三根电缆并用得安全载流量是668A,使用钳型电流表测得生活区得的负载电流只有500A,按照Iux≥Izmax的原则,这样运行应该是安全可靠的。但是,我们忽略了电缆是有电阻的,因为多并电缆连接时,连接处存在接触电阻不同,而此接触电阻又往往与电缆本身的电阻可比拟,其结果会造成多并电缆的电流分配不平衡,多并电缆的电流分配,是与电缆的阻抗有关的。
铜线界面粗略计算:S=IL/54.4U(S导线截面积平法毫米)
铝线界面粗略计算:S=IL/34U
电阻计算
电缆的直流标准电阻可以按照下式进行计算:
R20=ρ20(1+K1)(1+K2)/∏/4×dn×10
式中:R20——电缆在20℃时的支流标准电阻(Ω/km)
ρ20——导线的电阻率(20℃时)(Ω*mm/km)
d——每根心线的直径(mm)
n——芯线数;
K1——芯线扭绞率,约0.02-0.03;
K2——多心电缆是的扭绞率,约0.01-0.02。
任一温度下每千米长电缆实际交流电阻为:
R1=R20(1+a1)(1+K3)
式中:a1——电阻在t℃时的温度系数;
K3——计及肌肤效应及临近效应的系数,截面积为250mm以下时为0.01;1000 mm时为0.23-0.26。
电容计算
C=0.056Nεs/G
式中:C——电缆的电容(uF/km)
εs——相对介电系数(标准为3.5-3.7)
N——多心电缆的心数;
G——形状系数。
电感计算
配电用的地下电缆,当导体截面为圆形时,且忽略铠装及铅包损失时,每根电缆的电感计算方法与导线相同。
L=0.4605㏒Dj/r+0.05u
LN=0.4605㏒DN/rN
式中:L——每根相线的电感(mH/km)
LN——中性线的电感(mH/km);
DN——相线与中性线间的几何距离(cm);
rN——中性线的半径(cm);
DAN、DBN、DCN——各相线对中性线间的中心距离(cm)。